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Abstract 

 

The use of simulation to evaluate energy-efficient operations, commissioning problems, and demand-

response (DR) strategies offers important insights into building operations. This paper describes a step-

by-step procedure for using measured end-use energy data from a campus building to calibrate a 

simulation model developed in EnergyPlus. This process included identification of key input parameters 

for reducing uncertainties in the model. The building geometry and internal thermal zones were modeled 

to match the actual heating ventilation and air conditioning (HVAC) zoning for each individual variable 

air-volume (VAV) zone. We evaluated most key building and HVAC system components, including 

space loads (actual occupancy number, lighting and plug loads), HVAC air-side components (VAV 

terminals, supply and return fans) and water-side components (chillers, pumps, and cooling towers). 

Comparison of the pre- and post-calibration model shows that the calibration process greatly improves the 

model’s accuracy for each end use. We propose an automated model calibration procedure that links the 

model to a real-time data monitoring system, allowing the model to be updated any time. The approach 

enables the automated data feed from sMAP into the EnergyPlus model to create realistic schedules of 

space loads (occupancy, lighting and plug), performance curves of fans, chillers and cooling towers. We 

also field-tested DR control strategies to evaluate the model’s performance in predicting dynamic 

response effects. Finally, this paper describes application of the calibrated model to analyze control 

systems and DR strategies with the goal of reducing peak demand. We compare end-use data from 

modeled and actual DR events.  

 

Keywords: Model calibration; Automated model calibration; Demand response; DR strategies; Demand 

reduction; CO2 concentrations 
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1 Introduction 

 

The engineering, controls, and buildings energy research community is developing a number of building 

energy optimization and advanced control concepts to reduce energy use and enable demand-response 

(DR) capabilities in buildings. To accurately model the effect of optimal control strategies, a detailed 

simulation model is needed that produces highly accurate results for each of the building’s mechanical 

system components. The objective of this study is to demonstrate a new approach to develop and 

automating calibration of a model that can be used to evaluate the effect of various DR control strategies 

on peak demand reduction. The calibrated simulation model can be implemented in building energy 

management systems (BEMs) to assist building operators in predicting the effects of various control 

strategies. 

 

For modelers, an advantage of a building simulation physical model is that it enables them to evaluate 

various design strategies, energy conversation measures (ECMs), and building system operational modes 

and to choose an optimal operational scheme for achieving a given target, such as reducing demand or 

maximizing energy efficiency. Calibration of such a model is critical; the model must closely 

approximate the actual building being studied to ensure that costly mistakes are avoided. A number of 

studies demonstrate that simulation models provide valuable support for conceptual and integrated system 

design, enabling designers to evaluate new architectural concepts and the impacts of different types of 

building façades; daylighting, solar shading, passive cooling, and integrated control strategies; and other 

design elements. However, when building energy simulation moves from the design phase to the 

operational phase, there are many uncertainties in models’ ability to accurately reflect actual building 

performance, especially on a large scale. As reported in a study of Energy Performance of Leadership in 

Energy Efficiency and Design (LEED) for New Construction Buildings (Turner and Frankel, 2008), 

discrepancies between simulated and measured energy use intensity show an acceptably close match 

between simulated and measured values for only a small number of buildings. 

 

Empirical validation methods have traditionally been used to evaluate the accuracy of models for 

simulating the energy intensity of existing buildings, to identify model uncertainties, and to calibrate 

input variables by comparing them to measured values. Empirical validation has been demonstrated in 

many field studies (Pan et al., 2008; Yin et al., 2010; Raftery et.al, 2011; Yin et al., 2012; Wang et.al, 

2013; O’Neill et.al, 2013). Among the milestones in model calibration was the development of a 

systematic method using a “base load analysis approach” (Yoon et al., 2003), which uses a combination 

of monthly utility billing data and sub-metered data to calibrate a building energy performance model. A 

case study of this approach showed that it reliably and accurately simulated monthly and annual building 

energy requirements. Another key study by Reddy et al. (2007) proposed a general methodology for 

calibrating detailed building energy simulation programs based on performance data and applied this 

methodology to three case-study office buildings. In that study, building system loads were characterized 

as “weather dependent” (HVAC system loads) and “weather independent” (e.g., lighting and plug loads). 

Pan et al. (2008) calibrated a simulation model in a high-rise commercial building using a step-by-step 

method based on the approach proposed in American Society of Heating, Refrigerating, and Air 

Conditioning Engineers (ASHRAE) Guideline 14-2002. In 1994, Norford et al. presented a common-

sense procedure for calibrating a DOE-2 computer model of a commercial building, identifying the major 

building loads, including lighting and equipment. New eta al. (2012) introduced an “Autotune” 

methodology for calibrating building energy models by using a suite of machine-learning algorithms, 

parameter sensitivity analysis and sensor data. Finally, O’Neill and Eisenhower (2013) proposed a 

systematic, automated way to calibrate a building energy model. Their optimization-based approach 

leveraged the analysis of parametric uncertainty with parametric simulations minimizing the error 

between the simulated and measured data.  

 



 

Table 1 compares different types of model calibration methods in terms of their applications, advantages, 

and disadvantages.  

Table 1: Comparison of different model calibration methods 

Model calibration 

method 
Application Advantages Disadvantages 

Monitoring-based 
Forward model; data-

driven model 

 Detailed physical 

parameters for each 

component 

 Valid and credible 

 Large-scale model 

with calibration 

possible for sub-level 

system or component 

 Accurate  

 Expensive and time 

consuming 

 Lack of monitoring 

data 

 Large number of 

parameters for each 

component 

Optimization-based 
Forward model; data-

driven model 

 Inexpensive 

 Automatic calibration 

process possible 

 Many or few input 

parameters 

 Very accurate 

 A lot of computing 

time possibly 

required to minimize 

error 

 Not necessarily 

realistic 

Regression model-based 

(ASHRAE Inverse 

Modeling Toolkit) 

Data-driven model 

 Fast and inexpensive 

 Few input parameters 

 Very accurate 

 Lack of flexibility  

 Mostly used for 

baseline model 

development 

 

A key question is whether large-scale simulations have low predictive value in existing buildings. The 

answer is no, but intense calibration is needed to sufficiently reduce model uncertainties in order to 

achieve high predictive value in large-scale, highly complex simulations. For simulating building energy 

in these situations, a good solution is to break the model calibration problem down into smaller, sub-level 

systems and manageable segments. Calibrating each smaller segment of the building improves the 

model’s overall predictive value. Typically, a building’s energy usage is composed of lighting, plug, and 

HVAC system loads. Lighting and plug loads are assumed to be weather-independent variables even 

though lighting power consumption is influenced by daylighting. This portion of load can be measured by 

sub-metering on each floor of a building. HVAC power usage is driven by a number of factors, including 

weather, internal loads (occupant, light, and plug), HVAC equipment specifications, and system 

configurations and control schemes. As more and more building information becomes available, a critical 

problem is enabling the simple and efficient transmission of building energy data to the simulation model.  

 

Another challenge for building simulation models is to predict buildings’ behavior under dynamic 

conditions such as DR events or to evaluate the effects of energy-saving strategies such as peak-demand 

reduction.  Several past studies have looked at modeling these types of dynamic control strategies. Rabl et 

al. (1991) studied the application of DR simulation models in commercial buildings, developing a data-

driven based dynamic model to simulate the effect of different thermostat control strategies for reducing 

peak demand. Morris et al. (1994) investigated two optimal dynamic building control strategies in a 

representative room in a large office building; experiments showed as much as 40% reduction in peak 

cooling load from this approach.  

 

Several studies have demonstrated building control strategies for reducing peak load that are applicable to 

our objective of using the calibrated simulation model to model peak-load reduction approaches. Keeney 

et al. (1997) developed a building control strategy and tested it in a large office building, finding that pre-

cooling could limit peak cooling loads to 75% of cooling capacity. Xu et al. (2004) demonstrated the 



 

potential for reducing peak electrical demand in moderate-size commercial buildings by modifying 

HVAC system control. Field tests of this approach showed that chiller power was reduced by 80-100% (1 

- 2.3 watts per square foot [W/ft
2
]) during the peak period without thermal comfort complaints from 

occupants. Xu et al. (2005) conducted a series of field tests in two commercial buildings in Northern 

California to investigate the effects of various pre-cooling and demand-shed strategies. These tests 

showed the potential to reduce cooling load 25-50% during peak hours and demonstrated the importance 

of discharge strategies to avoid rebounds. Braun (2003) presented an overview of research related to the 

use of building thermal mass for shifting and reducing peak cooling loads in commercial buildings and 

provided specific results obtained through simulations, laboratory tests, and field studies.  

 

Peak-load reduction strategy modeling studies include Yin et al. (2010); this study developed and 

calibrated simulation models of 11 commercial buildings for evaluating the effect of different thermostat 

control strategies. There have been a number of other simulations, laboratory and field tests, and pilot 

studies on DR in buildings (Motegi, 2007; Piette et al., 2007). 

 

This paper adds to the body of research on model calibration and application to dynamic building 

scenarios such as DR events by developing an EnergyPlus model for a campus office building and 

calibrating it with actual measured data from the building’s energy management system. To calibrate the 

model’s foundation, we modeled the building geometry and internal thermal zones to match the actual 

HVAC zoning for each individual variable air-volume (VAV) zone. Following an evidence-based 

methodology, the model was developed from (1) as-built architectural, mechanical design, and control 

drawings; (2) actual building operation and behavior (occupancy, lighting and plug loads, HVAC system 

operations); and (3) detailed mechanical equipment specifications and actual operational performance 

(part-load operational curves of chiller, pump and fan, etc.). We propose an automated calibration 

procedure that links the model to the building’s real-time data monitoring system so that the model can be 

updated with measured data at any time, especially when there is any change in building system 

operations or when energy-efficiency measures are implemented. We used the calibrated model to 

evaluate the effect of different DR control strategies for peak-load reduction. 

 

2 Model development 

 

Building simulations often start with building load calculations using outdoor weather conditions and the 

building’s physical description. The building heating/cooling load is then transferred within the model to 

the system load to calculate the performance of air-side system components (e.g., supply and return fans, 

VAV terminals). Finally, the system load is used to calculate the plant load (e.g., chillers, cooling towers, 

pumps and auxiliary equipment). Generally, the goal of model calibration is to eliminate uncertainties in 

model inputs. There are limited assumptions and uncertainties in model of the physical building, 

including building geometry and envelope, but there are many uncertainties in model inputs for other 

components, such as weather data, space loads, HVAC system component actual performance, and 

building operational schedules. Overall, the model’s accuracy depends on how much detailed information 

is available from the building. The first step in developing a model includes the collection of model input 

data – weather, building physical details, space loads (occupant, lighting and plug loads), mechanical 

systems (equipment specifications and relevant control sequences), energy usage, and utility bills.  Yin 

et.al (2010) describe a general procedure for model development and calibration. 

 

 

2.1 Building description 

 

We performed a case study of an existing office building on campus that was built in 2008. The building 

is 141,000 square feet, with classrooms, offices, laboratories and a 149-seat auditorium. It houses offices 

and a nano-fabrication lab. Several issues require special attention in this facility. First, the silicon-wafer 



 

fabrication laboratory with a large clean room occupies several floors of the building. The chilled water 

loop of the building is shared with this laboratory. The building operator requested that no services be 

changed in the laboratory part of the building under any circumstances. In addition, the building has two 

600-ton chillers: a steam-powered absorption chiller and an electric centrifugal chiller. The centrifugal 

chiller operates during the winter for higher plant efficiency, and the absorption chiller is used during the 

summer to take advantage of redundant steam on campus. Thus, at any given time, only one of the 

chillers is operating; even so, each chiller is grossly over-sized for the building loads, so it short-cycles 

excessively.   

 

The building monitoring system has two main substations, a dozen sub-meters, and thousands of sensors. 

A comprehensive whole-building sub-metering system was installed to monitor power usage of process 

equipment, lighting and plugs on each floor, air-handling units (AHUs), the electrical chiller, and all other 

equipment components. 

 

2.2 Model development 

 

The initial EnergyPlus model created for the case study building followed the standard practices for 

creating advanced energy models; the physical structure was modeled, including appropriate mechanical 

system modules and standard ASHRAE assumptions for weather, ventilation, lighting, plug loads, and 

other attributes.  Detailed modules that correspond to the actual VAV zones were also modeled.  Yet, 

even with this substantial effort, energy usage results generated by the model differed significantly from 

actual building performance. Figure 1 shows the three-dimensional model of the case-study building. 

 

Figure 1: 3D Image of the EnergyPlus simulation model of the case-study building 

 

2.2.1 Weather data 

 

Weather is one of the most important factors in predicting a building’s energy performance. Actual 

weather data are necessary for calibrating a simulation model with measured data from buildings. 

Traditionally, energy model practitioners use weather data from the National Weather Station nearest the 

building site. In this study, an on-site weather station was used to capture the micro-climate variation in 

the area where the building is located. A full set of weather data points was collected from the local on-

site station, including the dry-bulb temperature, dew point temperature, relative humidity, solar radiation, 



 

wind speed/direction, and precipitation. Those weather data points were customized into the EnergyPlus 

weather file to be used in the simulations.  

 

2.2.2 Zoning 

 

Zoning is a method of simplifying an energy model while maintaining a reasonable level of accuracy. The 

degree of simplification entailed in zoning depends on the intended use of the model, e.g., for 

architectural design, code compliance, green building rating, evaluating ECMs, or other types of analysis. 

For typical model usage, the general criteria for thermal zoning include taking into account zone 

functionality, orientation, thermostat control, and whether a zone is perimeter or interior. 

 

For modeling of existing buildings, utilizing all available information is essential. In this study, a BMS 

provides the characteristics of each building system component. For example, for a VAV box, we can 

derive a full set of parameters from the BMS, including minimum/maximum airflow rates in 

cooling/heating mode, damper position, and the reheat coil valve position. In order to avoid a mismatch 

between thermal zone and VAV box in EnergyPlus, we used the area served by each VAV terminal as the 

basis for determining the zones in the model as shown in Figure 2. The advantage of this approach is that 

it captures the actual performance of VAV terminals and makes calibration easier. 

 

 
 

 

Figure 2: Thermal zoning of the case-study building model’s 4
th

 floor  

 

2.2.3 Internal loads 

 



 

Most buildings don’t have a sub-metering system for monitoring energy usage of each building system 

component. And in many buildings, the actual performance of the space load can differ significantly from 

the designed operation. During initial model development, the best way to simulate space load is 

following the relevant code or standard. ASHRAE standards 62.1, 90.1 and Title 24 standard are used to 

determine occupant density and the lighting and plug load densities, respectively, in each type of zone. 

Inputs from the standards would be used if no sub-metered data from the building were available. 

 

2.2.4 Building system loads 

 

Equipment specifications and building HVAC schedules provide all important characteristics for each 

system component, including air-side components (VAVs, AHUs, return and exhaust fans, etc.) and 

water-side components (chillers, cooling towers, chilled/condenser water pumps, rooftop air-conditioning 

units, etc.). For each component, all key parameters are identified as shown in Table 2. 

Table 2: Key parameters of building HVAC system components 

Air-side components Parameters Water-side components Parameters 

Thermostat setpoints 

Each system control 

zone’s thermostat 

temperature set point 

Steam absorption chiller 

Nominal capacity, 

entering/leaving water 

temperature and flow rate 

at evaporator and 

condenser, steam load at 

generator, associated 

pump power, operating 

temperature setpoints  

VAV terminals 

Minimum/maximum 

airflow rates under 

cooling/heating mode 

Electric centrifugal chiller 

Nominal capacity, 

coefficient of 

performance, 

entering/leaving water 

temperature and flow rate 

at evaporator and 

condenser, operating 

temperature set points, 

operating curves 

Supply/return fans in 

AHUs 

Supply airflow rate, 

supply fan power, 

pressure, part-load curve 

Pumps 
Type, water flow rate, 

nominal power 

Exhaust fans 
Fan power, airflow rate, 

operating efficiency 
Cooling towers 

Nominal capacity, 

entering/leaving water 

temperature and flow rate 

under design conditions, 

tower fan power, part-

load curve, operating 

temperature set points 

Coils in AHUs 

Cooling capacity, 

entering/leaving chilled 

water temperature, water 

flow rate 

Rooftop units 

Nominal capacity, 

characteristics of supply 

fan and cooling coil  

 

3 Model calibration 

 

The purpose of calibrating a model is to obtain accurate and high-quality simulation results that show 

good agreement with measured data (Pan et al., 2008; Yin et al., 2010). Several standards and guidelines 

provide the acceptable calibration tolerance of the cumulative variation of root mean squared error 



 

(CVRMSE) and the mean bias error (MBE) for annual, monthly, and hourly data calibration. A 

simulation model can thus be calibrated until it satisfies all of these criteria. Here are definitions of each 

metric used in the following equation: M (Measured), S (Simulated), and N (Number of month). 

 

month
month

month

month
month

month

1/2
2

monthmonth

month

month

month
month

month

(M S)
MBE (%) 100%

M

RMSE
CV(RMSE )(%) 100%

M

M S
RMSE

N

(M )
M

N

 
  

 

 
  

 

    
  

 
 







 
Table 3 presents the acceptable tolerances for monthly and hourly data calibration according to ASHRAE 

Guideline 14. Our initial models were calibrated to achieve the acceptable monthly tolerances based on 

the required MBE and CV(RSME) then again calibrated based on hourly data to increase accuracy. 

Table 3: Acceptable calibration tolerances 

Calibration Type Index Acceptable Value 

Monthly 
MBEmonth ±5% 

CV(RMSEmonth) 15% 

Hourly 
MBEhour ±10% 

CV(RMSEhour) 30% 

 

In this study, the purpose of calibrating the model was not only to evaluate the whole-building energy 

performance, but also to provide accurate simulation results for major building system components to 

accurately capture the effect of various DR strategies. Generally, models will be calibrated to the level of 

whole-building utility measurements. However, in some cases, a model with good calibration of the 

whole-building energy usage does not produce accurate results for each end use. Therefore, we began by 

calibrating the model at the level of each component end use, e.g., lighting, plugs, supply fans, chillers, 

and other sub-metering end uses. Whole-building energy usage can be easily calibrated once the 

components have been calibrated.  

 

The simple measuring and actuation profile (sMAP) allows instruments and other producers of physical 

information to directly publish their data, which is a great tool for studying buildings, allowing 

organization and querying of large repositories of physical data from BMSs. In this study, sMAP was 

used to collect and retrieve the data. There sMAP and the EnergyPlus simulation models can be bridged 

by exchanging monitoring data points and model data inputs. This data exchange speeds up the process of 

model calibration because model data inputs do not have to be manually validated. In addition, the 

process of model calibration can take place off line or in real time on line. Figure 3 presents a schematic 

of automated EnergyPlus model calibration based on linking the sMAP and the model. 

 

Most previous research work in the field of model development and calibration focuses on the whole-

building level to evaluate the effects of ECMs, building HVAC system control strategies, and so on. For a 

commercial building, whole-building energy usage is composed of the HVAC system, lighting and plug, 

and miscellaneous loads. A model that is well calibrated at the whole-building level might give an 

unreasonable breakdown at the sub-utility level. For DR studies, demand savings come from each load 



 

category: fan, chiller, pump, cooling tower, and lighting and plug loads. Therefore, it is essential to 

validate all relevant system components’ performance to ensure a high level of model accuracy. Generally, 

the building geometry and envelope are modeled as they are, and there is limited potential for model 

calibration for these components once they are verified by a field survey. As mentioned above, a key 

activity during this portion of the process is to define the internal thermal zones within the building. There 

is a commonly known trade-off among simplification (zoning), simulation speed, and model accuracy.  

After the model is developed, component-based calibration can be used to verify space loads and HVAC 

system and plant loads, step by step. Raftery et.al (2011) describe such an evidence-based model 

calibration methodology, and Wang et al. (2013) describe a comparable monitoring-based HVAC 

commissioning method. 
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 Visualization

 Analysis 

EnergyPlus Model

 Offline data fitting

 Comparison and calibration 

 DR analysis 

Building Geometry and Envelope

 Geometry and construction

 Zoning 

 Thermal mass 

 Infiltration 

Space Loads

 Walk-in occupant audit

 Floor level lighting and plug 

load sub-metering

 Space-based plug load audit 

HVAC System

 VAVs

 AHUs

 Operational mode 

Plant

 Steam usage

 Chillers

 Cooling towers

 Pumps 

Data feeding

Comparison

 

Figure 3: Schematic of Automated EnergyPlus Model Calibration 

3.1 Space loads 

 

Space loads usually account for nearly one-third of whole-building power usage in commercial office 

buildings (CBECS, 2012). During field surveys, it is easy to estimate the number of people and behavior 

in a building. However, as noted above, most buildings don’t have sub-metering systems to measure 

actual lighting and plug load power consumption. The result is over- or under-estimation of lighting and 

plug loads, which affects subsequent simulations of the HVAC system and plant loads.   

 

3.1.1 Occupants 

To enable estimation of the number of building occupants and the carbon dioxide (CO2) concentrations of 

outdoor fresh air and indoor air for the study building, the BMS and sensors monitored the outdoor air 

damper position and the supply airflow rate. CO2 measurement sensors were calibrated to be less than 75 

ppm – the accuracy specification in California’s Title 24 standard. On a test day, actual hourly occupancy 

profiles were recorded by counting the number of occupants in the open-plan office area on the study 

building’s fourth floor, as shown in Figure 4. Two algorithms for estimating the number of occupants are: 

steady-state (ASHRAE standard 62-1989R) and dynamic detection (S. Wang et al., 1999). 

𝑃 ∙ 𝑆 + 𝐸𝑎𝑐𝑚𝑂𝐴(𝐶𝑂𝐴 − 𝐶𝑅) = 𝑉
𝑑𝐶𝑅
𝑑𝑡

 

 

Steady-state detection algorithm:  

𝑃 =
𝐸𝑎𝑐𝑚𝑂𝐴(𝐶𝑅 − 𝐶𝑂𝐴)

𝑆
 

Dynamic detection algorithm: 

𝑃 =
𝐸𝑎𝑐(𝑚𝑂𝐴

𝑖 +𝑚𝑂𝐴
𝑖−1)(𝐶𝑅

𝑖 − 𝐶𝑂𝐴
𝑖 )

2𝑆
+ 𝑉

𝐶𝑅
𝑖 − 𝐶𝑅

𝑖−1

𝑆∆𝑡
 

 

Where, 

𝑃: Number of occupancy in the space 



 

𝑆: Average CO2 generation rate of an occupant, m
3
/h 

𝐸𝑎𝑐: Air change effectiveness 

𝑚𝑂𝐴: Outside air volume flow rate, m
3
/h 

𝐶𝑂𝐴: CO2 concentration of the supply air, ppm 

𝐶𝑅: CO2 concentration of the return air, ppm 

𝑉: Air volume of the space, m
3
/h 

 

Figure 4 compares estimated and recorded occupant profiles on a workday. The estimated occupancy 

profile is calculated at 15-minute intervals based on the dynamic detection algorithm of the outdoor 

airflow rate and indoor and outdoor CO2 concentrations. We can see that, during the typical lunch-hour 

period of 12pm to 2pm, most occupants left the building. At the same time, frequent opening of office 

doors pushed more fresh air into the office space, which was not captured in the monitoring system, and 

the estimated number of occupants was lower than recorded. However, overall, the estimated occupancy 

profile tracks true occupancy patterns on this test day well. As shown in Figure 5, the estimated 

occupancy profile indicates that very few people come to work on weekends and holidays. It is 

recommended that the occupancy profile be recorded at 15-minute or 1-minute intervals for effective 

validation of the occupant detection algorithm. Using this method, the estimated occupancy profile can be 

imported into the simulation model to replace the default occupant densities and schedules on weekdays, 

weekend and holidays of each month. 

 

Figure 4: Estimated occupancy profile in an open office area on a test day  



 

 

Figure 5: Estimated occupancy profile in an open office area over two weeks 

 

3.1.2 Lighting and plug loads 

 

The increasing implementation of sub-metering in buildings resolves the above problems with estimation. 

In this study, it was proposed that we combine the lighting sub-metering system and the field plug load 

audit to feed the actual lighting and plug load densities and schedules into the model. As shown in Figure 

6 and Figure 7, the actual operational schedules of the lighting and plug loads on the fourth floor can be 

obtained from the monitoring system via sMAP and imported into the model either off line or in real time. 

Notice that the lighting system usually turns on at 7AM, and most students come to work in open offices 

starting at 10AM, as indicated by plug power usage. Most of the plug loads were still on during off hours. 

 



 

 

Figure 6: Calibrated 4
th

-floor lighting power schedules on weekdays and weekends 

 

Figure 7: Calibrated 4
th

-floor plug power schedules on weekdays and weekends 

 

Table 4 compares the initial estimated and calibrated plug loads for each floor. The initial plug load 

power density was estimated as 13 W per square meter (W/m
2
) in the office area, and each floor’s plug 
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load was determined through a detailed plug load audit. Differences between the initial estimated and 

calibrated plug load power usage are about -55%~27.6%. For building spaces with different 

functionalities, it is very challenging to accurately estimate plug power use without sub-meters or detailed 

building audits. Even with a comprehensive building plug load audit, it is hard to understand the plug load 

schedules at the building or floor level. 

Table 4: Comparisons of initial estimated and calibrated plug load on each floor 

No. Floor Initial estimated (kW) Calibrated (kW) Differences 

1 32.4 25.4 27.6% 

2 13.5 30.0 -55.0% 

3 8.2 15.5 -47.1% 

4 10.4 16.7 -37.7% 

5 12.9 15.7 -17.6% 

6 6.8 6.9 -2.0% 

7 8.5 12.5 -32.1% 

 

3.2 Air-side components  

 

3.2.1 Variable air volume  

 

Taking the advantage of the VAV-based zoning approach, the physical data points from sMAP were 

derived and fed into the model, including each control zone’s thermostat temperature set point and 

minimum/maximum airflow rates under heating/cooling mode. All of these parameters are essential to 

capture the zone-by-zone thermal load and corresponding VAV performance. Figure 88 shows the 

significant difference between the original simulated airflow rate from ASHRAE 62.1-2007 and the 

design airflow rate. The design minimum ventilation rate is very close to the value required in California 

building code Title 24-2008. Most of the building’s VAV terminals are oversized and thus have higher 

minimum airflow rates, which causes a discrepancy in the supply fan airflow rate under cold or cool 

weather conditions. This discrepancy between the standard and the design ventilation rate could lead to 

lower fan power predictions from the model when most VAV terminals are running in minimum mode. 

At the same time, this discrepancy means that nearly 30% of the difference between the measured and the 

standard minimum ventilation rates could be applied to reducing building HVAC demand. 



 

 

Figure 8: Comparisons of design, Title 24-2008, and ASHRAE 62.1-2007 minimum ventilation rates 

 

3.2.2 Air-handling units 

 

With regard to fan power calibration, the part-load curve can have a major impact on simulated fan power 

usage. The actual operational curve can be different from the manufacturer reference curve or laboratory 

data. Therefore, it is important to derive the operational curve from measured data. AHUs usually contain 

more than two parallel fans. It is not easy to simulate this type of fan configuration in some simulation 

tools. If the parallel fans are identical and running in a similar operational mode, an accurate part-load 

curve can be applied to create a virtual large fan that represents the parallel fans. 

 

Using measured data on supply airflow rate and fan power percentage, we developed the actual fan 

operational curve of part-load performance shown in Figure 9. Because of the limited range of fan 

operation, two virtual points were put into the data set to stand for the operational conditions when the 

supply fan is running at 100% load. However, the data set is still missing large ranges of fan operational 

conditions that cannot be obtained from the building monitoring system. To validate the new operational 

curve, we derived another new set of data points from the monitoring system. 
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Figure 9: Comparison between reference and actual operational fan part-load curves 

 

Figure 10 compares measured and predicted power load fraction. The validation results indicate that the 

new curve captures the fan performance well under different operational conditions.  

 

Figure 10: Validation of the new supply fan operational curve 

 

3.3 Water-side components 

 

Three curves affect the electrical chiller cooling capacity performance: function of temperature, electrical 

input to cooling output ratio function of temperature, and electrical input to cooling output ratio function 

of part-load ratio curve (EnergyPlus). Those curves are used to capture the difference between the actual 

operational conditions and the design conditions, including the temperature of water exiting the chiller, 

the temperature of water entering the condenser, and the part-load ratio. Therefore, it is crucial to 

calibrate these three curves using real-time measured data. As shown in Figure 11, all chiller operational 

curves are derived for a set of monitoring data points and validated by using a new set of data points. The 

cooling tower requires only one curve, which is similar to the supply fan operation curve. The variable-

speed tower model is based on empirical curve fits of field measurements. Given the airflow rate and fan 

power percentage, the cooling tower fan power ratio curve can be easily calibrated as shown in Figure 13. 

 

Figure 11: Electrical input to cooling output ratio function of part-load ratio curve 



 

 

Figure 12: Validation of calibrated chiller model curve – Electric input to cooling output ratio 

 

 

Figure 13: Cooling tower fan power ratio as function of airflow ratio 



 

 

4 Results 

 

The following subsections compare simulated and measured results for lighting, plug loads, AHUs, and 

cooling tower power usage in the case-study building. In addition, we show how the calibrated model was 

validated with simulations of DR control strategies that demonstrate its ability to predict dynamic 

building responses. 

 

4.1 Lighting, plug, air-handling unit, and cooling plant power usage 

 

Figure 14 shows the measured lighting and plug power consumption plotted against the simulated data for 

every 15 minutes during a week in July, 2011. NMBE and CV(RMSE) for this comparison are 7.5% and 

12.5%, respectively, indicating that the model’s predictions of plug power usage show good agreement 

with the measured data.  

 

Figure 14: Comparison of measured and simulated lighting and plug load power usage during a 

week in summer 2011  

The comparison between calibrated simulation and measured results yields a monthly MBE within 10%. 

Using a new data set to evaluate the model’s predictions at the hourly level, we see that the hourly 

simulation results match the measured results with 20% for at least 20 of 24 hours each day. The 

calibration results meet the whole-building calibrated simulation performance requirement in ASHRAE 

Guideline 14. 

 

Using the calibrated fan model curve described earlier along with calibrated space loads (occupant, 

lighting, and plug) substantially improves the accuracy of the simulated fan power in relation to measured 

data. Figure 15 shows how the calibrated supply fan power matches the measured data. The simulated fan 

power usage showed good agreement with the measured data during most operational hours. NMBE and 

CV(RMSE) for this comparison are -1.8% and 5.7%, respectively.  
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Figure 15: Comparison of sub-metered power usage of supply fans, return fans, and two exhaust 

fans 

During the test period in summer 2011, the building’s monitoring system showed that the centrifugal 

chiller was short-cycling at low load. As a result, the building ran the absorption chiller, so there were no 

available data points for the electrical chiller to compare to simulated results. Also, between September 

and November, the minimum ventilation airflow rate was reset at 70% of the original value for most VAV 

boxes. The calibrated model adjusted the minimum airflow parameter to match actual operation. Table 5 

shows that the model error remains within the acceptable range with this adjustment. 
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Figure 16: Comparison of cooling tower measured and simulated power usage during a test week 

As summarized in Table 5, calibration significantly improved the EnergyPlus model’s accuracy to 5.7% 

for the VAV fan system and 12.5% for the lighting and plug loads.  In addition, the model’s ability to 

forecast AHU performance during periods of reduced ventilation rate still satisfies the model calibration 

tolerance. 

Table 5: Results of model calibration based on monitoring data  

Electric Load Test periods in 2011 NMBE CV(RMSE) 

HVAC – AHU (Original ventilation) Jul 25
th
 to Aug 3

rd
 -1.8% 5.7% 

HVAC – AHU (70% of Minimum airflow) Sep 24
th
 to Oct 24

th
  7.7% 10.7% 

Lighting & Plug load Jul 25
th
 to Aug 3

rd
 7.5% 12.5% 

HVAC – Cooling Tower Jul 25
th
 to Aug 3

rd
 1.8% 40.9% 

 

4.2 The Model’s Prediction of Dynamic Response 

 

The calibrated model results show good agreement with measured building data at the whole-building and 

sub-utility system component level during normal operating conditions. The model faces an additional 

challenge in predicting the effect of dynamic response control strategies on major system components, 

including supply and return fans serving the office portion of the building. 

 

A DR event was called at the building on August 22, 2011. A set of DR strategies was tested between 2 

pm and 7:30 pm. First, at 2 pm, supply air temperature was increased 2°F, from 56°F to 58°F. An hour 

later, the supply air temperature was increased by an additional 2°F. An hour later, all VAV boxes were 

controlled to provide ASHRAE default ventilation rates, which were 30% less than the building’s normal 

ventilation rates. At 4:40pm, zone temperature set points were increased from 70°F to 74°F. At 6:30pm, 

the reheat coil was disabled in the building. Finally at 7:30pm, all systems reverted slowly, over an hour, 

back to normal operation. Figure 17 compares the simulated and measured supply and return fan power 
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usage during the DR test event. Notice that the actual system response time for temperature adjustments 

(e.g., raising supply air temperature, raising thermostat set point) was longer than the response time for 

reducing the VAV minimum airflow rate. The model did not capture the response time for activating the 

control signal in the BMS. The calibrated model gives a good prediction of dynamic controls; the NMBE 

and CV(RMSE) are -3.6% and 7.1%, respectively. 

 

Figure 17: Comparison of measured and simulated supply and return fan power during a DR test 

event 

On August 2, 2012, the team conducted another integrated test of various control strategies for demand 

reduction during the peak hours of 2pm to 6pm. From 11:30am to 2:30pm, the building was pre-cooled by 

reducing the global temperature set point to 70°F from 72°F. As noted earlier, the effect of utilizing 

building thermal mass for pre-cooling has been demonstrated in field test studies (Xu et al., 2007; Yin et 

al., 2010). From 2:30pm to 6pm, the global temperature set point was reset to 76°F, and the minimum 

ventilation rate for all VAVs except those in electrical rooms was reduced by 70% of the original value. 

At the same time, the supply air temperature was raised 2°F from 58°F to 60°F, and the lighting and 

receptacle loads were reduced by about 40% throughout the building. The exactly same control strategies 

were implemented in the model. Table 6 shows the comparison between measured and modeled results. 

We can see that the model’s prediction of increasing power for pre-cooling the building is underestimated 

in comparison to the measured data. For demand reduction, the predicted results are very close to the 

measured data because the AHUs dropped to their lowest ventilation rate during the on-peak test period. 

When the rate is that low, there is very limited room for model uncertainties to affect the prediction of 

AHU power savings. 

Table 6: Comparison between measured and simulated AHU performance during a DR test event 

(Peak outside air temperature: 70°F) 

Test periods Pre-cooling hours DR event hours 

Demand savings (kW) Min Max Ave Min Max Ave 

Measured -39.9 -20.1 -32.7 20.0 31.3 26.6 
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Simulated -23.9 -19.1 -21.4 25.0 29.7 27.0 

 

5 Application of the calibrated model to demand response 

 

To achieve the goal of 30% peak demand reduction in the building, various DR strategies were proposed 

that addressed HVAC, lighting, and plug loads. After implementation of best practices for lighting and 

plug loads, significant demand reduction was still needed; the additional reduction had to come from the 

HVAC system. A common strategy for reducing HVAC system power is to pre-cool the building prior to 

a DR event and adjust global temperature set points during DR event hours. However, the HVAC 

system’s capacity for demand reduction is limited, so a more aggressive control strategy was required. 

Thermostat set-point adjustment combined with a reduction in minimum airflow is an aggressive DR 

control strategy that takes full advantage of VAV system. Both field and laboratory studies show that 

reduction of minimum VAV airflow rate can significantly reduce energy use without increasing occupant 

dissatisfaction (Arens et al., 2012). 

 

To evaluate the effect of different control strategy combinations, we demonstrated the use of the 

calibrated model. For this case study, we conducted a comprehensive matrix of simulations on a hot day 

with peak outside air temperature of 90°F. Multiple levels of DR, from low to high, were defined. The 

ASHRAE thermal comfort standard permits only 6°F of temperature drift and ramp during a period of 4 

hours (ASHRAE Standard 55, 2010). Relatively comfortable building conditions can be maintained 

within a range of space temperatures from 70°F to 78°F (Xu et al., 2008). The thermostat set point 

adjustment was simulated at various levels: 2°F, 3°F, 4°F, 5°F, and 6°F higher than the original set point. 

The minimum ventilation rate for VAVs was simulated at 30%, 40%, 50%, 60%, and 70% of the original 

value. The simulation results were put into a simple look-up table to enable selection of the optimal 

control strategy that would meet the peak-demand reduction goal under specific weather conditions. 

 

Figure 18: Comparison of peak demand reduction from HVAC system for all control scenarios 
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Figure 19: Comparison of peak demand reduction from AHUs for all control scenarios 

Figure 18 and Figure 19 compare the peak demand reduction from the HVAC system and the AHUs. As 

we can see in Figure 19, there is a bottom line of demand reduction from the AHUs for the control 

strategy of minimum ventilation rate adjustment. Reductions beyond 40% of the original minimum 

ventilation rate show very little impact on AHU power savings for thermostat set-point adjustments. The 

reason is that most VAVs would run above the minimum ventilation rate on such as hot day. A building 

with an oversized ventilation rate can save more power from the AHUs by combining minimum 

ventilation rate adjustments with thermostat adjustments. As for the whole HVAC system, the power 

usage of the chiller, cooling tower, and pump decrease with increasing thermostat set points. The 

calibrated model can provide the facility manager with a reliable prediction on which to base a smart 

control strategy to achieve the peak-demand reduction goal. 

 

6 Discussion 

 

This study demonstrates a bottom-up, component-based method of calibrating a building performance 

simulation model. For this process, the model description needs to be well balanced, taking into account 

available building information, the model’s use and computation speed, and other relevant factors.  For 

modeling existing buildings, it is very important to make use of sensor and meter data to calibrate the 

model. For example, thermal zoning in this study was developed based on the case-study building’s actual 

VAV control areas. Each VAV terminal, key parameters, e.g., minimum/maximum airflow rate, can be 

input to the model. The principle underlying this approach is to put all pieces of evidence or data from the 

building into the model. However, including every data point from a building can make the process of 

model calibration very time-consuming. The energy balance in a building energy simulation, in which 

three major parts of a model (building, system, and plant) can be simulated either simultaneously, suggest 

that an effective way to calibrate a model is to break down systems into their components and to validate 

the model inputs from the building to the system to the plant. Identifying the uncertainties in the key input 

parameters can also help reduce complexity and the effort to validate a model. 

 

Skepticism is sometimes expressed about the predictions of even a well-calibrated model because a model 

is static whereas a building’s operational behaviors are dynamic. For a model to accurately reflect a 

building’s changing operations, especially for advanced-use real-time model simulations, the model must 

be connected to the BMS so that monitoring data can be imported automatically into the model in real 

time. In these cases, an automatic process for model calibration is essential to incorporate actual 
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operational data. A direct connection between the model and the BMS with automated model calibration 

reduces the time and effort related to developing model inputs and verifying them against actual building 

performance. The auto-calibration approach will be very effective as sensors and meters are increasingly 

deployed in BMSs.  

 

Another option is to construct a hybrid: a combination of the data-driven model with a physical model in 

a diagram. For example, a building cooling load model could be developed using measured data from 

sensors and meters installed in the HVAC system and plant. This data-driven model of cooling load could 

be connected to other physical model components in a loop. However, this type of model would not be 

useful for analysis of some building components, such as the building envelope and daylighting.  

 

As indicated in the study, the approach of model development and calibration requires many meters and 

sensors, which could be very challenging to scale up for hundreds of buildings. It would be very efficient 

to focus on key parameters that have uncertainties such as space loads (occupancy, lighting and plug), 

HVAC system components’ specifications and actual operational conditions. Without meters and sensors 

installed in the building, the alternative method is to conduct a deep building audit and use the technical 

approach of load disaggregation from the whole building power.  

 

To evaluate the performance of our calibrated model in predicting building behavior during DR, we 

assessed the model’s accuracy in rendering the effect of various control strategies on peak-demand 

reduction. For the application of model for DR, the calibration of each VAV terminal should be paid more 

attention as the adjustment of thermostat setpoint gives direct impact on the fan performance. In the case-

study building, which is over-ventilated, adjusting the thermostat setpoints did not take advantage of the 

full potential power savings from the HVAC system. An integrated control strategy of thermostat set 

point adjustment and minimum ventilation rate resets enabled multiple VAVs to run in a broad range, 

which increased the peak-demand savings. Overall, given a goal of peak-demand reduction on a certain 

day, the model can be used to run all kinds of control scenarios to provide the facility manager with 

reliable predictions that can be used as a basis for day-ahead or day-of DR operations. 

 

7 Summary and Conclusions 

 

This paper describes a case study of developing a building performance model for an existing campus 

building; calibrating the model using a bottom-up, component-based method; and applying the model to 

predict DR behavior in the case-study building.  A wide variety of sensors in the building were linked to 

the model’s inputs, allowing for automated calibration of the model. This is a fast efficient way to ensure 

accurate DR modeling. One of the key factors needed to calibrate the model was information on occupant 

behaviors. This information was validated using the relationship between indoor and outdoor CO2 

concentrations. After the calibration of other building components – lighting, plug, HVAC system, and 

plant loads – we conducted a field test of DR control strategies to evaluate the model’s ability to predict 

dynamic building responses. The calibrated model yielded a very good prediction of AHU performance in 

a DR test mode; the model errors NMBE and CV(RMSE) were -3.6% and 7.1%, respectively. Another 

key finding of this study is that thermostat setpoint adjustment should be combined with a reduction in 

minimum airflow to achieve the best DR performance, especially in over-ventilated buildings. 

 

In the future, automated model development and calibration will be widely used as Building Information 

Modeling and low-cost sensors and meters in buildings are increasingly deployed. As more and more data 

are available from buildings, each component of a physical model can be represented as the input to a 

data-driven model. Such a hybrid model can accurately predict a building’s dynamic response during DR, 

event and can also optimize building operation under normal conditions. 
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